Cotação da 1º Parte: 8 Valores. As respostas são efectuadas no espaço a seguir disponível. A cotação das perguntas de Verdadeiro e Falso é feita sempre da mesma maneira. No decorrer da prova não serão prestados quaisquer esclarecimentos. Não pode utilizar calculadora nem qualquer meio de consulta. BOA SORTE!

Nome:			Número:
Formulário			
Axiomática:	A1. $P(A) \ge 0$	A2. $P(\Omega) = 1$	A3. Se $A \cap B = \emptyset$ então $P(A \cup B) = P(A) + P(B)$
$\operatorname{Var}(X) = E($	$(X - \mu)^2 = E(X^2) - \mu$	μ^2 ; Cov(X,Y) =	$= E\{(X - \mu_X)(Y - \mu_Y)\} = E(XY) - E(X)E(Y); \rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$
E(aX + bY) =	= aE(X) + bE(Y);	Var(aX + bY) = a	$a^{2} \operatorname{Var}(X) + b^{2} \operatorname{Var}(Y) + 2ab \operatorname{Cov}(X, Y) ; E(Y) = E_{X} [E(Y \mid X)];$
Função gerad	ora de momentos: A	$M_X(s) = E(e^{sX});$	$E(X^r) = M_X^{(r)}(0)$
$X \sim Po(\lambda) \Rightarrow j$	$f(x) = \left(e^{-\lambda}\lambda^x\right)/x$	$(\lambda > 0, x = 0, 1,$	$\cdots); X \sim B(n, \theta) \Rightarrow f(x) = \binom{n}{x} \theta^x (1 - \theta)^{n - x} (n > 1, x = 0, 1, \dots, n)$
$X \sim Ex(\lambda) \Rightarrow I$	$F(x) = 1 - e^{-\lambda x} $ (2)	$\alpha < 0$) e $M_X(s) =$	$= \frac{\lambda}{\lambda - s}; X \sim G(\alpha, \lambda) \Rightarrow M_X(s) = \left(\frac{\lambda}{\lambda - s}\right)^{\alpha}; \ \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n};$
$S^2 = \frac{\sum_{i=1}^n (X_i)^n}{n}$	$\frac{-\bar{X})^2}{(n-1)S^2}$; $(n-1)S^2 = n$	$n S^2, X \sim \chi^2_{(n)} \Rightarrow$	$E(X) = n$; $Var(X) = 2n$; $M_X(s) = (1 - 2s)^{-n/2}$, $s < \frac{1}{2}$

[Atenção: Cada resposta certa vale 2,5 cada resposta errada vale -2,5. A classificação desta questão variará entre um mínimo de *zero* e um máximo de *10*]

1. Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva:

	V	F
O espaço de resultados da experiência aleatória que consiste em seleccionar um hotel ao acaso e observar se um cesto de fruta de cortesia é oferecido é contínuo.		
Sejam A e B acontecimentos de Ω tais que P(A)=0,6 e P(B)=0,4 e P(A \cap B)=0,1.		
Então os acontecimentos A e B não são independentes.		
Sejam A e B acontecimentos de Ω com probabilidade positiva. Se A e B são incompatíveis então P(A-B)=P(A)		
Se A_1 , A_2 e A_3 constituem uma partição do espaço de resultados, então		
$P(A_1 \cap A_2 \cap A_3) = 0.$		

2. Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva:

	<u> </u>	F
A percentagem do e-comércio nas transacções comerciais de uma empresa pode ser representada por uma variável aleatória contínua.		
Sejam a e c números inteiros $(a < c)$. Se X é uma variável aleatória contínua então $P(a < X < c) \neq F_X(c) - F_X(a)$		
Se X é uma variável aleatória contínua então $\forall x \in \mathbb{R}, \qquad F(x+h) - F(x) > 0 \ \ quando \ h < 0$		
Se a variável aleatória X é discreta e $Y = \varphi(X)$ é uma função real de variável real então a variável aleatória Y pode ser discreta, contínua ou mista		

3. Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva:

	V	
Se $E(X)$. $E(Y) \neq E(XY)$, então X e Y não são independentes		
Se o conjunto D_X for finito, e X for uma variável aleatória discreta o valor esperado existe sempre.		
A probabilidade condicionada $P(X \le x Y \le y) = F(x, y) / F_Y(y)$ com $F_Y(y) \ne 0$		
Se a distribuição da variável aleatória X é simétrica em relação à origem, se existir, $E(X^3) = 0$.		

	V	F	
A experiência que consiste em seleccionar um aluno do ISEG e registar a cor dos cabelos é uma experiência de Bernoulli			
Num processo de Poisson o número de eventos que ocorrem em dois intervalos de tempo disjuntos são independentes.			
Se X tem distribuição uniforme no intervalo $(a, a + 4)$ $a \in \mathbb{R}$, então a probabilidade de qualqu sub-intervalo (a, x) nele contido é igual a um quarto da respectiva amplitude.	ıer		
Se o número de ocorrências por unidade de tempo num processo de Poisson é bem representado pela variável X com média λ , o tempo médio entre duas ocorrências consecutivas é igual a λ .			

5. Seja (X_1, X_2, \cdots, X_n) , n > 2, uma amostra casual simples retirada de uma população X de média e variância desconhecidas. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

V	F	
Sejam \bar{x}_1 e \bar{x}_2 valores concretos assumidos pelas médias de duas amostras particulares de uma mesma população X, então $\bar{x}_1=\bar{x}_2$.		
Se $n=3$, então $Var(\sum_{i=1}^{3} X_i) > Var(3X)$		
Se $X \sim t_{(n)}$ e $P(X \le x) < 0.5$ então $x > 0$.		
(X_1,X_n) é uma estatística.		

6. Sejam $X_i \sim Ex(\lambda)$ (i=1,2,3) independentes. Demonstre utilizando a função geradora de momentos que $X_1 + X_2 + X_3 \sim G(3,\lambda)$. [Cotação: 15]

7. Prove que se as variáveis aleatórias X e Y tiverem média nula e o mesmo desvio padrão, as variáveis Z = X + Y e U = X - Y são não correlacionadas. Serão independentes? Justifique. [Cotação: 15]

Número:

Nome:

Cotação da 1º Parte: 8 Valores. As respostas são efectuadas no espaço a seguir disponível. A cotação das perguntas de Verdadeiro e Falso é feita sempre da mesma maneira. No decorrer da prova não serão prestados quaisquer esclarecimentos. Não pode utilizar calculadora nem qualquer meio de consulta. BOA SORTE!

Formulário
Axiomática: A1. $P(A) \ge 0$ A2. $P(\Omega) = 1$ A3. Se $A \cap B = \emptyset$ então $P(A \cup B) = P(A) + P(B)$
$Var(X) = E(X - \mu)^{2} = E(X^{2}) - \mu^{2}; Cov(X, Y) = E\{(X - \mu_{X})(Y - \mu_{Y})\} = E(XY) - E(X)E(Y); \rho_{X,Y} = \frac{Cov(X, Y)}{\sigma_{X}\sigma_{Y}}$
$E(aX + bY) = aE(X) + bE(Y) \; ; \; \operatorname{Var}(aX + bY) = a^{2} \operatorname{Var}(X) + b^{2} \operatorname{Var}(Y) + 2ab \operatorname{Cov}(X, Y) \; ; \; E(Y) = E_{X} \big[E(Y \mid X) \big] ;$
Função geradora de momentos: $M_X(s) = E(e^{sX})$; $E(X^r) = M_X^{(r)}(0)$;
$X \sim Po(\lambda) \Rightarrow f(x) = \left(e^{-\lambda}\lambda^{x}\right)/x ! (\lambda > 0, x = 0, 1, \cdots); X \sim B(n, \theta) \Rightarrow f(x) = \binom{n}{x} \theta^{x} (1 - \theta)^{n - x} (n > 1, x = 0, 1, \cdots, n)$
$X \sim Ex(\lambda) \Rightarrow F(x) = 1 - e^{-\lambda x} \ (x < 0); X \sim G(\alpha, \lambda) \Rightarrow M_X(s) = \left(\frac{\lambda}{\lambda - s}\right)^{\alpha}; \ \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}; \ S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n};$
$(n-1)S^2 = nS^2$; $X \sim \chi^2_{(n)} \Rightarrow E(X) = n$; $Var(X) = 2n$; $M_X(s) = (1-2s)^{-n/2}$, $s < \frac{1}{2}$

[Atenção: Cada resposta certa vale 2,5 cada resposta errada vale -2,5. A classificação desta questão variará entre um mínimo de *zero* e um máximo de *10*]

1. Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva:

	٧	F
O espaço de resultados da experiência aleatória que consiste em seleccionar uma família ao acaso e observar o rendimentos do respectivo agregado familiar é discreto.		
Sejam A e B acontecimentos de Ω tais que P(A)=0,6 e P(B)=0,4 e P(A \cap B)=0,1 Então os acontecimentos A e B são incompatíveis.		
Sejam A e B acontecimentos de Ω com probabilidade positiva. Se A \subset B então P(A-B)=0		
Se $A_{\rm 1}$, $A_{\rm 2}$ e $A_{\rm 3}$ constituem uma partição do espaço de resultados, então		
$A_i \cap A_j = \emptyset \ \forall \ i, j = 1, 2.3 \ (i \neq j) \ .$		

2. Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva:

	<u> </u>	<u> </u>
O tempo que decorre entre a encomenda on-line e a satisfação da mesma por uma empresa pode ser representado por uma variável aleatória discreta.		
Sejam a e c números inteiros ($a < c$). Se X é uma variável aleatória discreta então		
$P(a < X < c) = F_X(c) - F_X(a)$		
Se X é uma variável aleatória discreta então		
$\forall x \in D_X$, $F(x+h) \leq F(x)$ quando $h < 0$		
Se a variável aleatória X é contínua e $Y=\varphi(X)$ é uma função real de variável real então a variável aleatória Y só pode ser contínua ou mista		

3. Seja (X,Y) uma variável aleatória bidimensional com função distribuição conjunta $F_{X,Y}(x,y)$. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	V	<u> </u>
Se $E(X)$. $E(Y) \neq E(XY)$, então nada se pode concluir sobre a independência de X e Y		
Se X for uma variável aleatória discreta, o valor esperado de X pode não existir.		
A probabilidade condicionada $P(Y \le y X \le x) = F(x,y)/F_Y(y)$ com $F_Y(y) \ne 0$		
Se a distribuição da variável aleatória X é simétrica em relação à origem, se existir, $E(X^2)=0$.		

<u> </u>	Г	
As vendas diárias num stand automóvel que tem um stock diário de 2 carros pode ser representado por uma distribuição Bernoulli.		
A variância de uma variável aleatória com distribuição de Poisson é igual ao quadrado da respectiva média.		
Se X tem distribuição uniforme no intervalo $(a, a + 2)$ $a \in \mathbb{R}$, então a probabilidade de qualquer sub-intervalo (a, x) nele contido é igual a metade da respectiva amplitude.		
Se o número médio de ocorrências por unidade de tempo num processo de Poisson é igual a λ , o tempo médio que decorre até à 3^a ocorrência consecutiva é igual a 3λ .		

5. Seja (X_1, X_2, \dots, X_n) , n > 2, uma amostra casual simples retirada de uma população X de média e variância desconhecidas. Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva:

V	F	
Sejam \bar{x}_1 e \bar{x}_2 valores concretos assumidos pelas médias de duas amostras particulares de uma mesma população X, então, pode acontecer que $\bar{x}_1 \neq \bar{x}_2$.		
Se $n=3$, então $Var(\sum_{i=1}^3 X_i) < Var(3X)$		
Se $X \sim t_{(n)}$ e $P(X \le x) < 0.5$ então $x < 0$.		
$(X_1 + X_n)/\sigma$ é uma estatística.		

6. Sejam $X_i \sim Ex(\lambda)$ (i = 1,2,3) independentes. Demonstre utilizando a função geradora de momentos

que
$$X_1 + X_2 + X_3 \sim G(3, \lambda)$$
. [Cotação: 15]

7. Prove que se as variáveis aleatórias X e Y tiverem média nula e o mesmo desvio padrão, as variáveis Z = X + Y e U = X - Y são não correlacionadas. Serão independentes? Justifique. [Cotação: 15]

Cotação da 1º Parte: 8 Valores. As respostas são efectuadas no espaço a seguir disponível. A cotação das perguntas de Verdadeiro e Falso é feita sempre da mesma maneira. No decorrer da prova não serão prestados quaisquer esclarecimentos. Não pode utilizar calculadora nem qualquer meio de consulta. BOA SORTE!

Nome:			Número:
Formulário			
Axiomática:	A1. $P(A) \ge 0$	A2. $P(\Omega) = 1$	A3. Se $A \cap B = \emptyset$ então $P(A \cup B) = P(A) + P(B)$
Var(X) = E(X)	$(X - \mu)^2 = E(X^2) - \mu$	μ^2 ; $\operatorname{Cov}(X,Y) =$	$= E\{(X - \mu_X)(Y - \mu_Y)\} = E(XY) - E(X)E(Y); \ \rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$
E(aX + bY) =	= aE(X) + bE(Y);	Var(aX + bY) = a	$e^{2} \text{Var}(X) + b^{2} \text{Var}(Y) + 2ab \text{Cov}(X, Y); E(Y) = E_{X}[E(Y \mid X)];$
Função gerado	ora de momentos: <i>M</i>	$M_X(s) = E(e^{sX});$	$E(X^r) = M_X^{(r)}(0)$
$X \sim Po(\lambda) \Rightarrow f$	$f(x) = \left(e^{-\lambda}\lambda^x\right)/x!$	$(\lambda > 0, x = 0, 1, \cdot)$	$\cdots); X \sim B(n, \theta) \Rightarrow f(x) = \binom{n}{x} \theta^{x} (1 - \theta)^{n - x} (n > 1, x = 0, 1, \dots, n)$
$X{\sim}Ex(\lambda) \Rightarrow F$	$F(x) = 1 - e^{-\lambda x} \ (x$	$x < 0$; $X \sim G(\alpha, \lambda)$	$)\Rightarrow M_X(s)=\left(\frac{\lambda}{\lambda-s}\right)^{\alpha}; \ \overline{X}=\frac{\sum_{i=1}^n X_i}{n}; \ S^2=\frac{\sum_{i=1}^n (X_i-\overline{X})^2}{n};$
$(n-1)S^{'2}=n$	S^2 ; $X \sim \chi^2_{(n)} \Rightarrow E($	$(X) = n \; ; \; \operatorname{Var}(X)$	= $2n$; $M_X(s) = (1-2s)^{-n/2}$, $s < \frac{1}{2}$

[Atenção: Cada resposta certa vale 2,5 cada resposta errada vale –2,5. A classificação desta questão variará entre um mínimo de *zero* e um máximo de *10*]

1. Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva:

	V	F	
O espaço de resultados da experiência aleatória que consiste em seleccionar um mês ao acaso e observar a taxa de inflação ocorrida nesse mês é contínuo.			
Sejam A e B acontecimentos de Ω tais que P(A)=0,6 e P(B)=0,4 e P(A \cap B)=0,24. Então os acontecimentos A e B são independentes.			
Sejam A e B acontecimentos de Ω com probabilidade positiva. Se B \subset A então P(A-B)=P(A)			
Se A_1 , A_2 e A_3 constituem uma partição do espaço de resultados, então $P(A_1 \cup A_2 \cup A_3) = 1$.			

2. Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva:

	V	<u> </u>
O número de dias que decorre entre a encomenda on-line e a satisfação da mesma por uma empresa pode ser representado por uma variável aleatória discreta.		
Sejam a e c números inteiros $(a < c)$. Se X é uma variável aleatória discreta então $P(a < X < c) \neq F_X(c) - F_X(a)$		
Se X é uma variável aleatória contínua então $F(x) - F(x+h) > 0 \ \ quando \ h < 0$		
Se a variável aleatória X é discreta e $Y=\varphi(X)$ é uma função real de variável real então a variável aleatória Y só pode ser discreta		

3. Seja (X,Y) uma variável aleatória bidimensional com função distribuição conjunta $F_{X,Y}(x,y)$. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	<u> </u>	<u> </u>
Se $E(X)$. $E(Y) = E(XY)$, então X e Y são independentes		
O valor esperado de uma variável aleatória contínua existe sempre.		
A probabilidade condicionada $P(X \le x Y \le y) = F(x, y) / F_Y(y)$ com $F_Y(y) \ne 0$		
Se a distribuição da variável aleatória X é simétrica em relação à origem, se existir, $E(X^5) = 0$.		

٧

	<u>v</u>	
A experiência que consiste em seleccionar um aluno do ISEG e verificar se passou a Estatís 1 é uma experiência de Bernoulli.	tica	
Num processo de Poisson o número de eventos que ocorrem em dois intervalos de tempo ou espaço disjuntos são independentes	J	
Se X tem distribuição uniforme no intervalo $(a, a + 6)$ $a \in \mathbb{R}$, então a probabilidade de qualque sub-intervalo (a, x) nele contido é igual a um sexto da respectiva amplitude.	er	
Se o número médio de ocorrências por unidade de tempo num processo de Poisson é igual a o tempo médio entre duas ocorrências consecutivas é igual a $1/\lambda$.	аλ,	

5. Seja (X_1, X_2, \dots, X_n) , n > 2, uma amostra casual simples retirada de uma população X de média e variância desconhecidas. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

V	F	
Sejam \bar{X}_1 e \bar{X}_2 as médias de duas amostras de dimensão n da mesma população X . Então, em geral, $E(\bar{X}_1) \neq E(\bar{X}_2)$.		
Se $n = 3$, então $Var(\sum_{i=1}^{3} X_i) \neq Var(3X)$		
Se $X \sim t_{(n)}$ e $P(X \le x) > 0.5$ então $x < 0$.		
$(X_1 + X_n)/2$ não é uma estatística.		

6. Sejam $X_i \sim Ex(\lambda)$ (i=1,2,3) independentes. Demonstre utilizando a função geradora de momentos que $X_1 + X_2 + X_3 \sim G(3,\lambda)$. [Cotação: 15]

7. Prove que se as variáveis aleatórias X e Y tiverem média nula e o mesmo desvio padrão, as variáveis Z = X + Y e U = X - Y são não correlacionadas. Serão independentes? Justifique. [Cotação: 15]

Número:

Nome:

Cotação da 1º Parte: 8 Valores. As respostas são efectuadas no espaço a seguir disponível. A cotação das perguntas de Verdadeiro e Falso é feita sempre da mesma maneira. No decorrer da prova não serão prestados quaisquer esclarecimentos. Não pode utilizar calculadora nem qualquer meio de consulta. BOA SORTE!

Formulário
Axiomática: A1. $P(A) \ge 0$ A2. $P(\Omega) = 1$ A3. Se $A \cap B = \emptyset$ então $P(A \cup B) = P(A) + P(B)$
$Var(X) = E(X - \mu)^{2} = E(X^{2}) - \mu^{2}; Cov(X, Y) = E\{(X - \mu_{X})(Y - \mu_{Y})\} = E(XY) - E(X)E(Y); \rho_{X, Y} = \frac{Cov(X, Y)}{\sigma_{X}\sigma_{Y}}$
$E(aX + bY) = aE(X) + bE(Y) \; ; \; \operatorname{Var}(aX + bY) = a^{2} \operatorname{Var}(X) + b^{2} \operatorname{Var}(Y) + 2ab \operatorname{Cov}(X, Y) \; ; \; E(Y) = E_{X} \big[E(Y \mid X) \big] ;$
Função geradora de momentos: $M_X(s) = E(e^{sX})$; $E(X^r) = M_X^{(r)}(0)$
$X \sim Po(\lambda) \Rightarrow f(x) = \left(e^{-\lambda}\lambda^{x}\right)/x! (\lambda > 0, x = 0, 1, \cdots); X \sim B(n, \theta) \Rightarrow f(x) = \binom{n}{x} \theta^{x} (1 - \theta)^{n - x} (n > 1, x = 0, 1, \cdots, n)$
$X \sim Ex(\lambda) \Rightarrow F(x) = 1 - e^{-\lambda x} (x < 0); X \sim G(\alpha, \lambda) \Rightarrow M_X(s) = \left(\frac{\lambda}{\lambda - s}\right)^{\alpha}; \ \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}; \ s^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n};$
$(n-1)S^{2} = n S^{2}$ $X \sim \chi_{(n)}^{2} \Rightarrow E(X) = n$; $Var(X) = 2n$; $M_{X}(s) = (1-2s)^{-n/2}$, $s < \frac{1}{2}$

[Atenção: Cada resposta certa vale 2,5 cada resposta errada vale –2,5. A classificação desta questão variará entre um mínimo de *zero* e um máximo de *10*]

1. Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva:

	V	F
O espaço de resultados da experiência aleatória que consiste em seleccionar um aluno ao		
acaso e observar a sua altura é discreto.		
Sejam A e B acontecimentos de Ω tais que P(A)=0,6 e P(B)=0,4 e P(A \cap B)=0,24.		
Então os acontecimentos A e B não são incompatíveis.		
Sejam A e B acontecimentos de Ω com probabilidade positiva.		
Se A = B então P(A-B)=0		
Se A_1 , A_2 e A_3 constituem uma partição do espaço de resultados, então $A_1 \cup A_2 \cup A_3 = \Omega$.		

2. Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva:

	V	F
O número de produtos que uma empresa comercializa pela Internet pode ser representada por uma variável discreta.		
Sejam a e c números inteiros $(a < c)$. Se X é uma variável aleatória contínua então $P(a < X < c) \neq F_X(c) - F_X(a)$		
Se X é uma variável aleatória discreta então $\forall x \in D_X, \qquad F(x) - F(x+h) > 0 \ \ quando \ h < 0$		
Se a variável aleatória X é contínua e $Y = \varphi(X)$ é uma função real de variável real então a variável aleatória Y não pode ser discreta		

3. Seja (X,Y) uma variável aleatória bidimensional com função distribuição conjunta $F_{X,Y}(x,y)$. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	V	<u> </u>
Se $E(X)$. $E(Y) = E(XY)$, então nada se pode concluir sobre a independência de X e Y		
Se o conjunto D_X for finito, e X for uma variável aleatória discreta o valor esperado existe sempre.		
A probabilidade condicionada $P(X \le x Y \le y) = F(x, y) / F_X(x) \operatorname{com} F_X(x) \ne 0$		
Se a distribuição da variável aleatória X é simétrica em relação à origem, se existir, $E(X^4)=0$.		

A experiência que consiste em retirar uma bola de uma urna com bolas vermelhas, amarelas e

A média e variância de uma variável aleatória com distribuição de Poisson são iguais. Se X tem distribuição uniforme no intervalo (a, a + 3) $a \in \mathbb{R}$, então a probabilidade de qualquer sub-intervalo (a, x)nele contido é igual a um terco da respectiva amplitude.

Se o número de ocorrências por unidade de tempo num processo de Poisson é bem representado pela variável X com média λ , o tempo médio que decorre até à 3ª ocorrência consecutiva é igual a 3/\(\lambda\)

azuis é uma experiência de Bernoulli.

5. Seja (X_1, X_2, \dots, X_n) , n > 2, uma amostra casual simples retirada de uma população X de média e variância desconhecidas. Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva:

V	F	
Sejam \bar{X}_1 e \bar{X}_2 as médias de duas amostras de dimensão n da mesma população X . Então $E(\bar{X}_1)=E(\bar{X}_2)$.		
Se n=3, então $Var(\sum_{i=1}^{3} X_i) = Var(3X)$		
Se $X \sim t_{(n)}$ e $P(X \le x) > 0.5$ então $x > 0$.		
$\sum_{i=1}^n X_i^2/\sigma$ não é uma estatística.		

6. Sejam $X_i \sim Ex(\lambda)$ (i = 1,2,3) independentes. Demonstre utilizando a função geradora de momentos que $X_1 + X_2 + X_3 \sim G(3, \lambda)$. [Cotação: 15]

7. Prove que se as variáveis aleatórias X e Y tiverem média nula e o mesmo desvio padrão, as variáveis Z = X + Y e U = X - Y são não correlacionadas. Serão independentes? Justifique. [Cotação: 15]

1.

ESTATÍSTICA I - 2º Ano/Economia-Finanças-2ºSem. 2011-2012 Exame Época Normal 2ª Parte – Prática – 80 minutos V1

Nome:				numero:			
Espaço reservado para classificações							
1a.(10)	2a.(20)	3a.(10)	3c.(10)	T:			
1b.(20)	2b.(20)	3b.(10)	4.(20)	P:			
Para efeitos de previsão meteorológica da ocorrência diária de chuva (acontecimento C) na Ilha Isolada consideram-se 3 níveis de pressão atmosférica, A -alta, M -média e B -baixa. As probabilidades de ocorrência simultânea dos três níveis de pressão e de chuva são respectivamente $P(A \cap C) = 0.03$, $P(B \cap C) = 0.18$, $P(M \cap C) = 0.09$. Além disso sabe-se que a pressão atmosférica é alta em 10% dos dias em que chove e em 60% dos dias em que não chove. a) Num dia em que chove qual a probabilidade de ocorrência de pressão atmosférica média?							
0.45	0	.10 🔲	0.60	0.30			
b) Determine	a probabilidade	de ocorrência d	e pressão atmosfério	ca alta.			

٧	ariáveis aleatórias co	om distribuição conjunt	ta dada por:		
		$f_{X,Y}(x,y)=2k$	(0 < x < 2;	0 < y < k)
a)	Verifique que $k = \frac{1}{2}$ ao consumo diário		dade de o consumo	o diário da ma	téria prima X ser inferior
b)	•	dade média da matéria 3 kgs da matéria prim ncia das variáveis?	•	•	•
3.	O número de reci distribuição de Poi	_	numa central telefo	ónica em cad	a 10 minutos tem uma
a)	Determine a proba	abilidade de o número	de reclamações re	ecebidas numa	a hora ser no mínimo de
().8574 🗌	0.9491 🗆	0.7919	().9345 🗌
b	Qual a probabilida	de de se ter de espera	ır mais de 2 minuto	s pela 1ª recla	nmação?
().9975 🗌	0.4512 🗌	0.0025	(0.5488 🗌
c)		acaso 6 períodos de as 5 reclamações por		a probabilidad	de de em 3 deles

2. As quantidades (dezenas de kgs) de matérias primas X e Y incorporadas em certo produto são

4. A duração do "chip" de um certo tipo de computadores é uma variável aleatória X com média θ e variância θ^2 . Seja (X_1, X_2, \cdots, X_n) uma amostra casual de uma população desses "chip" e $T(X_1, \qquad X_2, \cdots, X_n) = \frac{1 + \sum_{i=1}^n X_i}{n}$

$$T(X_1, X_2, \dots, X_n) = \frac{1 + \sum_{i=1}^n X_i}{n}$$

uma estatística a utilizar para estimar o parâmetro θ .

Use uma distribuição assimptótica para aproximar θ . Considere uma amostra de dimensão $n = 100 \, \text{ e } \theta = 10.$

$$P(T(X_1, X_2, \dots, X_n) \ge 12)$$

ESTATÍSTICA I - 2º Ano/Economia-Finanças – 2º sem 2011-2012 Exame Época Normal 2ª Parte – Prática – 80 minutos V2

Nome:				Número:			
Espaço reservado para classificações							
1a.(10)	2a.(20)	3a.(10)	3c.(10)	T:			
1b.(20)	2b.(20)	3b.(10)	4.(20)	P:			
Isolada consid lidades de oc $P(A \cap C) = 0.0$ é alta em 10% a) Num dia en	deram-se 3 níveis corrência simultâ $P(B \cap C) = 0.0$ dos dias em que n que chove qual	s de pressão atm nea dos três ni 18 , $P(M \cap C) = 0$ e chove e em 60 a probabilidade	nosférica, A -alta, M -nosférica, N -nosférica,	essão atmosférica baixa?			
0.45 [0	0.60 🗌	0.30	0.10			
b) Determine a	a probabilidade d	le ocorrência de	pressão atmosférica	ı alta.			

'	variáveis aleatórias c	om distribuição con	junta dada por:			
		$f_{X,Y}(x,y)=2$	k (0 < x <	2; $0 < y$	< <i>k</i>)	
;	a) Verifique que $k=$ ao consumo diári	$\pm rac{1}{2}$ e calcule a probo da matéria prima		nsumo diário da	a matéria prii	ma X ser inferio
b)	Determine a quantion foram incorporados sobre a independênt	3 kgs da matéria p	-	· ·		-
•	O número de recla distribuição de Poisso	•	numa central to	elefónica em d	cada 20 mi	nutos tem uma
a)	Determine a probab	oilidade de o número	o de reclamações	recebidas num	a hora ser n	o mínimo de 14
	0.415	0.9496	0.0739		0.9676	
b)	Qual a probabilidad	e de se ter de espe	rar mais de 3 min 0.4066	utos pela 1ª red	clamação? 0.5934	
c)	Seleccionados ao a sido recebidas 5 rec	acaso 6 períodos de	e 10 minutos qual	a probabilidad		eles terem

2. As quantidades (dezenas de kgs) de matérias primas X e Y incorporadas em certo produto são

4. A duração do "chip" de um certo tipo de computadores é uma variável aleatória X com média θ e variância θ^2 . Seja (X_1, X_2, \cdots, X_n) uma amostra casual de uma população desses "chip" e $T(X_1, \qquad X_2, \cdots, X_n) = \frac{1 + \sum_{i=1}^n X_i}{n}$

$$T(X_1, X_2, \dots, X_n) = \frac{1 + \sum_{i=1}^n X_i}{n}$$

uma estatística a utilizar para estimar o parâmetro θ .

Use uma distribuição assimptótica para aproximar θ . Considere uma amostra de dimensão $n = 100 e \theta = 10.$

$$P(T(X_1, X_2, \dots, X_n) \ge 12)$$

ESTATÍSTICA I - 2º Ano/Economia-Finanças – 2º sem 2011-2012 Exame Época Normal 2ª Parte – Prática – 80 minutos V3

Nome	:				Numero:			
Espaç	Espaço reservado para classificações							
1a.	.(10)	2a.(20)	3a.(10)	3c.(10)	T:			
1b.	.(20)	2b.(20)	3b.(10)	4.(20)	P:			
Isolad lidade $P(A \cap \mathcal{E})$ é alta	da considerants de ocorrênts $C) = 0.03, P(0)$ em 10% dos	n-se 3 níveis de ncia simultânea $(B \cap C) = 0.18$, dias em que ch	e pressão atmosfé a dos três níveis $P(M \cap C) = 0.09$ hove e em 60% d	ência diária de chuva (acon erica, A -alta, M -média e B -b de pressão e de chuva Além disso sabe-se que a os dias em que não chove.	paixa. As probabi- são respectivamente pressão atmosférica			
	0.10	0.60 [0.30 🗌	0.70			
b) De	termine a pro	babilidade de o	corrência de pres	são atmosférica alta.				

	variáveis aleatórias com distribuição conjunta dada por:							
		$f_{X,Y}(x)$	(y) = 2k	(0 < x < 2)	; $0 < y$	< <i>k</i>)		
a)	Verifique que $k = \frac{1}{2}$ ao consumo diário	2		de de o consur	no diário da r	natéria prim	na X ser infe	rior
b)	Determine a quant foram incorporados sobre a independê	s 3 kgs da ı	matéria prima	·-			-	
3.	O número de rec distribuição de Pois	-		ma central tel	efónica em	cada 10 m	ninutos tem	uma
a)	Determine a probab	ilidade de c	número de re	clamações rec	ebidas numa	hora ser n	o mínimo de	10.
	0.9917 🗌	0.9846		0.9850		0.9696		
b)	Qual a probabilidade	e de se ter (de esperar ma	is de 1 minuto	pela 1ª reclar	mação?		
	0.498	0.7408		0.9502		0.2592		
	Seleccionados ao a sido recebidas 5 rec			ninutos qual a	probabilidade	e de em 3	deles terem	I

2. As quantidades (dezenas de kgs) de matérias primas X e Y incorporadas em certo produto são

4. A duração do "chip" de um certo tipo de computadores é uma variável aleatória X com média θ e variância θ^2 . Seja (X_1, X_2, \cdots, X_n) uma amostra casual de uma população desses "chip" e $T(X_1, \qquad X_2, \cdots, X_n) = \frac{1 + \sum_{i=1}^n X_i}{n}$ uma estatística a utilizar para estimar o parâmetro θ .

$$T(X_1, X_2, \dots, X_n) = \frac{1 + \sum_{i=1}^n X_i}{n}$$

Use uma distribuição assimptótica para aproximar θ . Considere uma amostra de dimensão $n = 100 e \theta = 10$.

$$P(T(X_1, X_2, \cdots, X_n) \ge 12)$$

ESTATÍSTICA I - 2º Ano/Economia-Finanças – 2º sem 2011-2012 Exame Época Normal 2ª Parte – Prática – 80 minutos V4

Nome:				Numero:			
Espaço reserva	Espaço reservado para classificações						
1a.(10)	2a.(20)	3a.(10)	3c.(10)	T:			
1b.(20)	2b.(20)	3b.(10)	4.(20)	P:			
Isolada consididades de oc $P(A \cap C) = 0.0$ é alta em 10%	deram-se 3 níveisorrência simultâ 3 , $P(B \cap C) = 0$. dos dias em que	s de pressão atm nea dos três ní $18, P(M \cap C) = 0$ e chove e em 60	nosférica, A -alta, M -m veis de pressão e d 0.09. Além disso sabo 0% dos dias em que n	chuva (acontecimento C) na édia e B -baixa. As probabide chuva são respectivame-se que a pressão atmosfa chove.	- iente		
0.54	0.3	80 🗆	0.60	0.10 🗌			
h) Determine	a probabilidade	de ocorrência d	a nraceão atmocfárica	alta			

	são variáveis aleatórias com distribuição conjunta dada por:
	$f_{X,Y}(x,y) = 2k$ $(0 < x < 2; 0 < y < k)$
a)	Verifique que $k=\frac{1}{2}$ e calcule a probabilidade de o consumo diário da matéria prima X ser inferior ao consumo diário da matéria prima Y .
b)	Determine a quantidade média da matéria prima X incorporada no produto num dia em que foram incorporados 3 kgs da matéria prima Y. O que pode concluir, com base no resultado, sobre a independência das variáveis?
2.	O número de reclamações recebidas numa central telefónica em cada 20 minutos tem uma distribuição de Poisson de média 3.
	 a) Determine a probabilidade de o número de reclamações recebidas numa hora ser no mínimo de 7.
	0.9089
	b) Qual a probabilidade de se ter de esperar menos de 3 minutos pela 1ª reclamação?
	0.9999
	c) Seleccionados ao acaso 6 períodos de 10 minutos qual a probabilidade de em 3 deles terem sido recebidas 5 reclamações por período.

2. As quantidades (dezenas de kgs) de matérias primas X e Y incorporadas em certo produto

3. A duração do "chip" de um certo tipo de computadores é uma variável aleatória X com média θ e variância θ^2 . Seja (X_1, X_2, \cdots, X_n) uma amostra casual de uma população desses "chip" e $T(X_1, X_2, \cdots, X_n) = \frac{1 + \sum_{i=1}^n X_i}{n}$ uma estatística a utilizar para estimar o parâmetro θ .

$$T(X_1, X_2, \dots, X_n) = \frac{1 + \sum_{i=1}^{n} X_i}{n}$$

Use uma distribuição assimptótica para aproximar θ . Considere uma amostra de dimensão $n = 100 e \theta = 10.$

$$P[T(X_1, X_2, \dots, X_n) \ge 12]$$